Programme de colle S27

2 au 5 mai 2023

AL7 Applications linéaires

Prérequis : AL6 (sous-espaces vectoriels de \mathbb{R}^n) et AL4 (applications)

1. Généralités

- \triangleright Définition d'une application linéaire de \mathbb{R}^n dans \mathbb{R}^p . Ensemble $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ de ces applications linéaires. Application identité $\mathrm{id}_{\mathbb{R}^n}$.
- \triangleright Combinaison linéaire d'applications linéaire. Composée de deux applications linéaires. Puissances d'une application linéaire $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$.

2. Noyau et image d'une application linéaire.

- ▷ Définition du noyau. C'est un sous-espace vectoriel de l'ensemble de départ.
- \triangleright Définition de l'image. C'est un sous-espace vectoriel de l'ensemble d'arrivée. Famille génératrice de ${\rm Im}(f)$.

3. Injectivité, surjectivité, bijectivité

- ▶ Rappel des définitions vues en AL4.
- ▶ Lien injectivité noyau pour une application linéaire.

Méthodes du chapitre

- ▶ Montrer qu'une application est linéaire.
- ▶ Savoir calculer une composée ou une combinaison linéaire d'applications.
- \triangleright Déterminer (une base de) Ker(f). Si Ker $(f) = \{0_{\mathbb{R}^n}\}$, on ne demandera pas de base.
- \triangleright Déterminer une base de Im(f).
- \triangleright Montrer que Im $(f) = \mathbb{R}^p$, c'est-à-dire montrer que f est surjective.
- \triangleright Déterminer des équations cartésiennes définissant $\mathrm{Im}(f)$.
- $\,\triangleright\,$ Déterminer si f est injective.
- \triangleright Montrer que f est bijective et déterminer son application réciproque : par résolution de f(u) = v ou en utilisant une relation polynomiale en f (quand l'exercice en donne une).

Pas de vocabulaire technique (endomorphisme, isomorphisme, automorphisme).

PB3 Espaces probabilisés quelconques

- 1. Pré-requis : séries numériques. Les séries à connaître : géométriques et leurs dérivées première et seconde, exponentielles et savoir utiliser un télescopage.
- 2. Révisions : chapitre PB1 (probabilités sur un univers fini)

3. Espaces probabilisables - événements

- $\triangleright \text{ Événements } \bigcap_{n=0}^{+\infty} A_n, \bigcup_{n=0}^{+\infty} A_n.$
- \triangleright Système complet d'événements $(A_n)_{n\in\mathbb{N}}$.

4. Probabilités

- \triangleright Définition : une probabilité est une application P définie sur l'ensemble des événements $\mathcal A$ à valeurs dans [0,1], telle que :
 - $-P(\Omega)=1$;
 - pour toute famille $(A_n)_{n\in\mathbb{N}}$ d'événements deux à deux incompatibles, la série $\sum_{n\in\mathbb{N}} P(A_n)$

converge et
$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} P(A_n).$$

- ▶ Propriétés de base des probabilités. Pas de limite monotone.
- ▶ Probabilités conditionnelles. Formules des probabilités totales, des probabilités composées, de Bayes.
- ▶ Indépendance. Indépendance mutuelle.

Méthodes du chapitre

- ▷ Exprimer un événement sous forme d'unions/intersections finies d'événements plus simples puis calculer sa probabilité (comme en PB1).
- ightharpoonup Nouveauté : Calculer des probabilités du type $P\left(\bigcup_{k=0}^{+\infty}A_k\right)$ où les A_k sont deux à deux incompatibles.

Pas de limite monotone donc pas de calcul direct de probabilité d'une intersection infinie.

▷ Savoir utiliser la formule des probabilités totales (avec éventuellement un système complet infini.)

Questions de début de colle

La colle débutera par une ou plusieurs questions dans la liste ci-dessous :

- Toute définition, tout résultat et tout énoncé de théorème doit être connu et peut faire l'objet d'une question de cours.
- [Exemple du cours] Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ vérifiant $f^2 2f 3id_{\mathbb{R}^n} = 0$. Montrer que f est bijective et déterminer f^{-1} .
- [Exemple du cours] On dispose d'une grille infinie dont les lignes et les colonnes sont numérotées $1, 2, \ldots$ On place un jeton dans une case et on note $A_{i,j}$: « le jeton est placé en ligne i, colonne j ». On suppose que

$$\forall i, j \in \mathbb{N}^*, \ P(A_{i,j}) = \frac{1}{e^{2^j(i-1)!}}.$$

Calculer la probabilité de l'événement D : « le jeton est placé sur la diagonale ».

• [Exemple du cours] On lance une infinité de fois une pièce tombant sur Pile avec probabilité $p \in]0,1[$. On note A_0 : « Ne jamais obtenir Pile » et pour $n \ge 1$, A_n : « Obtenir un premier Pile au n-ième lancer ». Calculer la probabilité des chacun des A_n , $n \in \mathbb{N}$.