Programme de colle S26

10 au 14 avril 2023

AN9 Séries numériques

1. Notion de série

- \triangleright Série de terme général u_n . Sommes partielles associées.
- \triangleright Convergence d'une série, somme d'une série convergente. Si $\sum u_n$ converge alors (u_n) tend vers 0. Divergence grossière.
- ▷ Combinaison linéaire de séries convergentes. Multiplier par un réel non nul ne change pas la nature de la série.
- ▷ Exemples de séries télescopiques.
- \triangleright Si $u_n \geqslant 0$ pour tout n, alors sa suite des sommes partielles est croissante.

2. Séries usuelles

- ▷ Séries géométriques, dérivées première et seconde.
- ▷ Séries exponentielles.

Méthodes du chapitre

- ▶ Repérer une série usuelle.
- ▶ Montrer qu'une série diverge grossièrement.
- ▶ Montrer qu'une série converge/diverge en calculant les sommes partielles.

AL7 Applications linéaires

Prérequis : AL6 (sous-espaces vectoriels de \mathbb{R}^n) et AL4 (applications)

1. Généralités

- \triangleright Définition d'une application linéaire de \mathbb{R}^n dans \mathbb{R}^p . Ensemble $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ de ces applications linéaires. Application identité $\mathrm{id}_{\mathbb{R}^n}$.
- \triangleright Combinaison linéaire d'applications linéaire. Composée de deux applications linéaires. Puissances d'une application linéaire $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$.

2. Noyau et image d'une application linéaire.

- ▷ Définition du noyau. C'est un sous-espace vectoriel de l'ensemble de départ.
- \triangleright Définition de l'image. C'est un sous-espace vectoriel de l'ensemble d'arrivée. Famille génératrice de ${\rm Im}(f).$

3. Injectivité, surjectivité, bijectivité

- ▶ Rappel des définitions vues en AL4.
- ▶ Lien injectivité noyau pour une application linéaire.

Méthodes du chapitre -

- ▶ Montrer qu'une application est linéaire.
- > Savoir calculer une composée ou une combinaison linéaire d'applications.
- \triangleright Déterminer (une base de) Ker(f). Si Ker $(f) = \{0_{\mathbb{R}^n}\}$, on ne demandera pas de base.
- \triangleright Déterminer une base de Im(f).
- \triangleright Montrer que $\operatorname{Im}(f) = \mathbb{R}^p$, c'est-à-dire montrer que f est surjective.
- \triangleright Déterminer des équations cartésiennes définissant $\mathrm{Im}(f)$.
- \triangleright Déterminer si f est injective.
- ightharpoonup Montrer que f est bijective et déterminer son application réciproque : par résolution de f(u)=v ou en utilisant une relation polynomiale en f (quand l'exercice en donne une).

Pas de vocabulaire technique (endomorphisme, isomorphisme, automorphisme).

Questions de début de colle

La colle débutera par une ou plusieurs questions dans la liste ci-dessous :

- Toute définition, tout résultat et tout énoncé de théorème doit être connu et peut faire l'objet d'une question de cours.
- [Exemple du cours] Étudier la nature et donner, le cas échéant, la somme de la série $\sum_{n\in\mathbb{N}^*}\frac{1}{n(n+1)}.$
- [Exemple du cours] Donner (en justifiant) un contre-exemple montrant que la réciproque de la propriété « si la série $\sum_{n\in\mathbb{N}}u_n$ converge, alors $(u_n)_{n\in\mathbb{N}}$ tend vers 0 » est fausse.
- [Exemple du cours] Étudier la nature et donner, le cas échéant, la somme de la série $\sum_{n\in\mathbb{N}^*}\frac{n+1}{2^n}.$
- [Exemple du cours] Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ vérifiant $f^2 2f 3id_{\mathbb{R}^n} = 0$. Montrer que f est bijective et déterminer f^{-1} .