TD - AN10

CORRIGÉ DES EXERCICES

Exercice 1

1. On trouve $a=-\frac{3}{2}$ et $b=\frac{7}{2}$. Sur $]-\infty,1[,\,x-1<0$ et x-3<0 donc une primitive de f sur $]-\infty,-1[$ est

$$F: x \mapsto -\frac{3}{2}\ln(|x-1|) + \frac{7}{2}\ln(|x-3|) = -\frac{3}{2}\ln(1-x) + \frac{7}{2}\ln(3-x)$$

2. $g(x) = \frac{1}{4x^2 - 4x + 1} = \frac{1}{(2x - 1)^2}$ donc une primitive de g sur $]1/2, +\infty[$ est

$$G: x \mapsto -\frac{1}{2(2x-1)}.$$

Exercice
$$_{r^2}^{\mathbf{2}}$$

Exercice 2 $I = \int_1^2 \ln(x)^2 dx = \int_1^2 1 \times \ln(x)^2 dx.$

$$u(x) = \ln(x)^{2}$$

$$v(x) = x$$

$$u'(x) = \frac{2}{x}\ln(x)$$

$$v'(x) = 1$$

u et v sont de classe \mathcal{C}^1 sur [1,2] donc par intégration par parties :

$$\int_{1}^{2} \ln(x)^{2} dx = \left[x \ln(x)^{2} \right]_{1}^{2} - \int_{1}^{2} 2 \ln(x) dx$$
$$= 2 \ln(2)^{2} - 2 \int_{1}^{2} \ln(x) dx.$$

Posons

$$u_2(x) = \ln(x)$$
 $v_2(x) = x$ $u'_2(x) = \frac{1}{x}$ $v'_2(x) = 1$

 u_2 et v_2 sont de classe \mathcal{C}^1 sur [1,2] donc par intégration par parties :

$$\int_{1}^{2} \ln(x) dx = \left[x \ln(x) \right]_{1}^{2} - \int_{1}^{2} 1 dx$$
$$= 2 \ln(2) - 1$$

Donc

$$\int_{1}^{2} \ln(x)^{2} dx = 2\ln(2)^{2} - 4\ln(2) + 2$$

Exercice 3

1.
$$I_0 = \int_0^1 e^{-3x} dx = \left[-\frac{1}{3} e^{-3x} \right]_0^1 = \frac{1 - e^{-3}}{3}.$$

2. Soit
$$n \ge 0$$
. $I_{n+1} = \int_0^1 (1-x)^{n+1} e^{-3x} dx$.

Posons, $u(x) = (1-x)^{n+1}$ et $v(x) = -\frac{1}{3}e^{-3x}$. Les fonctions u et v sont de classe \mathcal{C}^1 sur [0,1] donc par intégration par parties,

$$I_{n+1} = \left[-\frac{1}{3} (1-x)^{n+1} e^{-3x} \right]_0^1 - \int_0^1 (n+1)(1-x)^n \frac{1}{3} e^{-3x} dx = \frac{1}{3} - \frac{n+1}{3} I_n$$

car (n+1) > 0. On a bien montré : $I_{n+1} = \frac{1}{3} - \frac{n+1}{3}I_n.$

3.
$$I_1 = \frac{1}{3} - \frac{1}{3}I_0 = \frac{2 + e^{-3}}{9}$$
 et $I_2 = \frac{2}{3} - \frac{1}{3}I_1 = \frac{5 - 2e^{-3}}{27}$

4. Soit $n \in \mathbb{N}$. Soit $x \in [0,1]$. Alors $-3x \le 0$ donc $0 \le e^{-3x} \le 1$ par croissance de exp. Ainsi, $0 \le f(x) \le (1-x)^n$ car $(1-x)^n \ge 0$. Par croissance de l'intégrale entre 0 et 1 $(0 \le 1)$, on a :

$$0 \leqslant I_n \leqslant \int_0^1 (1-x)^n \, \mathrm{d}x$$

Or,
$$\int_0^1 (1-x)^n dx = \left[-\frac{(1-x)^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$$
. Par conséquent, $0 \le I_n \le \frac{1}{n+1}$.

5. $\lim_{n\to+\infty}\frac{1}{n+1}=0$ donc d'après la question précédente et le théorème de convergence par encadrement, la suite (I_n) converge vers 0.

Exercice 4

- 1. $I_0 = e 1$
- 2. On pose

$$u(x) = \ln(x)^n$$

$$v(x) = x$$

$$u'(x) = \frac{n+1}{x} \ln(x)^n$$

$$v'(x) = 1$$

u et v sont de classe \mathcal{C}^1 sur [1,e] donc par intégration par parties :

$$I_n n + 1 = \int_1^e \ln(x)^{n+1} dx = \left[x \ln(x)^{n+1} \right]_1^e - \int_1^e (n+1) \ln(x)^n dx$$
$$= e - (n+1)I_n$$

3. Pour $n \in \mathbb{N}$ et $x \in [1, e]$, $0 \le \ln(x) \le 1$ donc $0 \le \ln(x)^{n+1} \le \ln(x)^n$. Par croissance de l'intégrale (on a bien $1 \le e$) :

$$0 \leqslant I_{n+1} \leqslant I_n$$
.

Donc $(I_n)_{n\in\mathbb{N}}$ est décroissante et positive.

4. D'après la question 2, $I_{n+1} = e - nI_n - I_n$ donc $nI_n = e - (I_n + I_{n+1}) \leqslant e$ car $I_n + I_{n+1} \geqslant 0$. On a donc $0 \leqslant I_n \leqslant \frac{e}{n}$. D'après le théorème d'encadrement, $\lim_{n \to +\infty} I_n = 0$.

Exercice 5

- 1. La fonction $f: t \mapsto \sqrt{t^2+1}$ est, par composée, continue sur \mathbb{R} $(1+t^2 \geqslant 0)$. D'après le théorème fondamental, $F: x \mapsto \int_1^x \sqrt{t^2+1} \, \mathrm{d}t$ est la primitive de f sur \mathbb{R} qui s'annule en 1. On a donc :
 - F est dérivable (car c'est une primitive);
 - F' = f donc F' est continue sur \mathbb{R} .

Ainsi, F est bien de classe \mathcal{C}^1 sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $F'(x) = f(x) = \sqrt{x^2 + 1}$

2. Ici, G n'est pas la fonction du théorème fondamental de l'analyse. On procède autrement. La fonction $g: t \mapsto e^{x^3}$ est continue sur \mathbb{R} par composée. Elle admet donc une primitive G_1 sur \mathbb{R} . On a alors, pour tout $x \in \mathbb{R}$:

$$G(x) = G_1(2x) - G_1(0).$$

- G_1 est dérivable sur \mathbb{R} et $G_1' = g$ est continue sur \mathbb{R} donc G_1 est de classe \mathcal{C}^1 sur \mathbb{R} .
- $x \mapsto 2x$ est de classe \mathcal{C}^1 sur \mathbb{R} et $G_1(0)$ est une constante donc par composée et somme, G est bien de classe \mathcal{C}^1 sur \mathbb{R} .
- Pour tout réel x

$$G'(x) = 2G'_1(2x) - 0 = 2g(2x) = 2\exp(8x^3).$$

3. $h: t \mapsto \ln(t^2 + 2)$ est continue sur \mathbb{R} car ln est continue sur \mathbb{R}^*_+ et $t^2 + 2 > 0$ pour tout réel $t \in (\Delta < 0)$. Elle admet donc une primitive H_1 sur \mathbb{R} . Pour tout réel x

$$H(x) = H_1(x^3) - H_1(x^2)$$

Comme précédemment, on montre que H_1 est de classe \mathcal{C}^1 sur \mathbb{R} puis par composée, H est de classe \mathcal{C}^1 sur \mathbb{R} .

Pour tout réel x

$$H'(x) = 3x^{2}H'_{1}(x^{3}) - 2xH'_{1}(x^{2}) = 3x^{2}h(x^{3}) - 2xh(x^{2}) = 3x^{2}\ln(x^{6} + 2) - 2x\ln(x^{4} + 2)$$

Exercice 6

1. Soit x>0. Pour $t\in[x,2x]$ (on a bien $x\leqslant 2x$), $e^t\geqslant t$ (cours) donc puisque $t\geqslant x>0$, $\frac{e^t}{t}\geqslant 1$. Par croissance de l'intégrale sur [x,2x]:

$$\int_x^{2x} \frac{\mathrm{e}^t}{t} \, \mathrm{d}t \geqslant \int_x^{2x} 1 \, \mathrm{d}t = 2x - x = x.$$

 $\text{2. Puisque } \lim_{x \to +\infty} x = +\infty, \text{ par minoration } \lim_{x \to +\infty} \int_{x}^{2x} \frac{\mathrm{e}^{t}}{t} \, \mathrm{d}t = +\infty.$

Exercice 7

- 1. f est définie sur \mathbb{R} , centré en 0. Pour $x \in \mathbb{R}$, $f(-x) = \int_0^{-x} e^{t^2 - (-x)^2} dt = \int_0^x e^{(-u)^2 - x^2} (-du) = -f(x)$.
- 2. $f(x) = e^{-x^2} G(x)$ où $G: x \mapsto \int_0^x e^{t^2} dt$ est une primitive de $g: x \mapsto e^{x^2}$. G est dérivable donc par produit, f aussi et

$$f'(x) = -2x e^{-x^2} G(x) + e^{-x^2} G'(x) = -2xf(x) + 1.$$